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Abstract. Fringe shapes in a multiple-beam de Broglie-wave interferometer based on the atomic Kapitza-
Dirac effect are studied. An all-optical implementation of such a device is proposed. A realization in the
time-domain, using Bose-Einstein condensates released from a trap, seems viable within the present state
of the art.

PACS. 32.80.Lg Mechanical effects of light on atoms, molecules, and ions – 42.50.Vk Mechanical effects
of light on atoms, molecules, electrons, and ions – 03.75.Dg Atom and neutron interferometry

During the last decade, matter-wave interferometry has
been successfully extended to the domain of atoms and
molecules [1]. Many different types of two-beam atom in-
terferometers have already been demonstrated. High con-
trast multiple-beam interference fringes have been ob-
served by Weitz et al. [2]. The multiple-beam splitter used
in that experiment is state-selective and makes use of the
particular Zeeman-level structure of cesium.

Multiple-beam interferometers in which the split-
ting/merging is produced with standing-waves of far-
off detuned laser light in the Kapitza-Dirac diffraction
regime are the subject of the present paper. Not being
state-selective (“de Broglie-wave interferometry”), such an
approach has the advantage of obtaining high-contrast
fringes with any optically accessible atomic species and
even molecules [3].

The paper consists of two parts. In a first section we
study the expected fringe profiles in interferometers that
use the atomic Kapitza-Dirac effect to multiply split and
merge matter-wavefronts. Some particularly useful config-
urations are identified. A proposal for such an interfer-
ometer is made in the second part of the paper. It has
the merit of employing only well established atom-optical
components based on induced dipole forces. A drawback is
that it could be difficult to implement using thermal beam
machines. In the time domain, using ultracold atoms re-
leased from a trap, the proposal seems to be realistic. Still,
a thorough numerical analysis will be required to comple-
ment the rather crude treatment given in this paper [4].

1 Multiple-beam interferometry
using the atomic Kapitza-Dirac effect

Under suitable conditions, standing-waves of light can
act as sinusoidal phase gratings for atoms. The far-field
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diffraction pattern produced by this “atomic Kapitza-
Dirac (KD) effect” was first observed in reference [5]. In a
three-grating Mach-Zehnder atom interferometer the KD
effect has been used for the three purposes of splitting,
reflecting, and merging atomic de Broglie wavefronts [6].
Since not only two, but actually a series of diffraction or-
ders are populated by these gratings, only a fraction of
the incoming atomic flux contributes to the observed (si-
nusoidal) fringe pattern. The efficiency may be improved
either by trying to reduce the loss by “blazing” the grat-
ing, so that mainly the two relevant diffraction orders are
populated [7], or by virtue of necessity, actually using the
multiple-splitting property of the grating.

Here we will study the second approach. Quite gen-
erally, multiple beam interferometry is expected to lead
to higher contrast fringes. Unlike the two-beam case, in
which the position (and possibly the amplitude) but not
the shape of the fringes is altered by external influences,
in the case of a larger number of interfering beams, the
fringe profile itself will be context-dependent. We will ex-
emplarily concentrate on the fringes that arise when the
distance between the splitting and the merging grating is
changed.

When a standing-wave of light acts as a phase grating
for atoms [8], its transmission function T (x) is propor-
tional to

exp
[
i
ω2t

δ
sin2(kx)

]
, (1)

where ω is the Rabi frequency, t the atom-light interaction
time, δ the detuning and k = 2π/λ the wavenumber of the
light. The numerical value of the “Raman-Nath parame-
ter” c ≡ ω2t/2δ of the grating is typically in the order of a
few units. We will assume that two such (identical) grat-
ings are placed at the positions z = −d/2 and z = +d/2.
An atomic matter-wavefront (de Broglie wavelength λdB)
moving in the positive z-direction at a velocity vz will be
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split by the grating at z = −d/2 and merged by the grat-
ing at z = +d/2, if we find a means to specularly reflect
the various diffraction orders at z = 0 using an appro-
priate atom-optical element. The resulting interferometer
would then be symmetrical. Along the y-axis the system is
assumed to be homogeneous, so that the resulting diffrac-
tion problem is essentially two-dimensional.

It is important to note that, when talking about “mul-
tiple” beams, we are implying them to be spatially sep-
arated. This means that the gratings are assumed to be
used in the atomic far-field diffraction regime. If a de-
notes the entrance aperture (the actual width over which
the grating is illuminated by the atomic wavefront), the
far-field condition reads d� a2/λdB. For the sake of read-
ability, in this Section we will omit any finite-aperture
terms [9].

The diffraction amplitudes produced by a light grat-
ing are obtained by Fourier-decomposing its transmission
function T ,

T (x) =
∞∑

j=−∞
Jj(c)eij(π/2+2kx) . (2)

Here Jj( ) denotes a Bessel function. If the atomic wave-
front ψ(x) is initially plane and constant (normalized to
unity, ψ(x) = 1), immediately after traversing the first
grating it will be corrugated according to ψ(x) = T (x).
Subsequent free propagation for a time τ− = (d/2)/vz
adds a kinetic phase factor proportional to j2 and τ−,

ψ(x) =
∞∑

j=−∞
Jj(c)eij(π/2+2kx) exp

[
−ij2 (2~k)2

2M
τ−
~

]
.

(3)

Here M is the atomic mass. The mirror at z = 0 inverts
the propagation direction of the diffracted beamlets and
therefore amounts to replacing x by −x in equation (3).
In addition, it may introduce a j-dependent phase shift
exp(iφj). In the next section we will consider schemes
that may allow experimental implementations of such an
atomic multiple mirror. Since we are assuming a symmet-
ric interferometrical setup, we expect, to lowest order and
up to a constant and therefore irrelevant phase, φj ∝ j2.
This term has the form of the kinetic phase factor, and we
will absorb it in our notation for simplicity. We will take
into account that, in general, the mirror will only allow to
reflect the diffraction orders which are closest to the beam
axis. Since only these will contribute to the interference
pattern, we restrict the summation over j to the reflected
orders, say, from −J to J [10], and freely propagate anew
for a time τ+ ' τ−, eventually obtaining

ψ(x) =
J∑

j=−J
Jj(c)eij(π/2−2kx) exp

[
−ij2 (2~k)2

2M
τ−+τ+
~

]
.

(4)

From a ray-optical point of view, the reflecting device
at z = 0 would be able to refocus the various inci-
dent beams only for the particular grating-mirror distance

vzτ = d/2 for which it was initially devised. However,
this statement holds true only up to the limits imposed
by the actual, wave-optical nature of matter. In the case
of atom-optical light gratings, a representative length in
the Fresnel (near-field) diffraction region is the Talbot-
Hiedemann self-imaging distance D = 2(λ/2)2/λdB [11],
which is typically in the order of a few millimeters. In
fact, inasmuch as an accurate image of the grating is pro-
duced at this distance, displacing a grating by D will
not essentially alter the far-field diffraction behavior. To
be on the safe side we will assume that τ− ' τ ' τ+
and vz|τ+ − τ−| � D, so that the interferometer is effec-
tively operated in the shadow-region of the gratings [11].
The second light grating then multiplies equation (4) with
T (x). In this symmetric interferometer, the final output
into order j = 0 is the signal of interest. The intensity I
diffracted into the zeroth order is given by

I =

∣∣∣∣∣∣
J∑

j=−J
J2
j (c)(−1)j exp

[
−ij2 (2~k)2

2M
τ−+τ+
~

]∣∣∣∣∣∣
2

≡

∣∣∣∣∣∣
J∑

j=−J
J2
j (c) (−1)je−ij2α

∣∣∣∣∣∣
2

. (5)

We now proceed to identify the parameters c for which
the shape of the fringes I(α) = I(α+2π) may particularly
advantage interferometry.

J = 1: three-beam atom interferometer

In this case we have I(α) = J4
0 + 4J4

1 − 4J2
0J

2
1 cosα. The

best contrast is obtained when the condition J2
0 = 2J2

1 is
fulfilled, leading to I(α) = [4J2

1 sin(α/2)]2. The smallest c
satisfying this condition is c ' 1.161, leading to sinusoidal
fringes with a contrast [4J2

1 (c)]2 of about 91% (see Fig 1),
much better than the maximal contrast achievable in a
three-grating Mach-Zehnder interferometer. Zero contrast
is obtained if we choose c such that J0(c) = 0 (dashed line
in Fig. 2). This is physically obvious due to the symmetry
of the resulting two-beam interferometer.

J = 2: five-beam atom interferometer

In this case we obtain

I(α) = J4
0 + 4J4

1 + 4J4
2 − 4J2

0J
2
1 cosα

− 8J2
1J

2
2 cos(3α) + 4J2

0J
2
2 cos(4α) . (6)

If we choose the same condition J2
0 = 2J2

1 as in the J = 1
case, we obtain the solid curve plotted in Figure 1. Its
maximum is substantially sharper than in the three-beam
situation. The maximum is about I(π) ' 0.996, implying
that most of the incoming atomic flux can be captured
in this configuration. In fact, using this parameter, the
addition of two more reflected beams (J = 3) does not
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Fig. 1. One period of the three-beam (dotted line) and five-
beam (continuous line) interferometer fringe signal I for a
Raman-Nath parameter c = 1.161.
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Fig. 2. One period of the four-beam (dotted line) and six-beam
(continuous line) interferometer fringe signal I for a Raman-
Nath parameter c = 2.405. No contrast would be observed in
a corresponding two-beam interferometer (dashed line).

appreciably change the fringe shape. The contrast raises
to 99.99%.

Another interesting possibility is choosing c such that
J0(c) = 0. Then we are effectively dealing with a four-
beam atom interferometer that produces three sinusoidal
fringes, I(α) = 4[J4

1 + J4
2 − 2J2

1J
2
2 cos(3α)], per period,

thus increasing the sensitivity of the interferometer by a
factor of three. Since the lowest zero of J0, c ' 2.405, is
quite close to the value c = 2.630, for which J2

1 (c) = J2
2 (c)

is satisfied, the contrast is quite high (about 83%). The
(dotted) curve representing the fringe shape under these
circumstances is shown in Figure 2.

J = 3: seven-beam atom interferometer

As we already commented, two more reflected beams do
not substantially change the performance of the inter-
ferometer in the c = 1.161 configuration. However, if
J0(c) = 0 is fulfilled (meaning that we are actually dealing
with a six-beam interferometer), the fringes become non-
sinusoidal and the central maximum at α = π, in par-
ticular, becomes strongly peaked, with I(π) ' 0.98. At
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Fig. 3. Fraction of the incoming flux diffracted into the orders
−J to J by a sinusoidal phase grating, as a function of its
Raman-Nath parameter c.

the minima, less than 2% of the incoming atomic flux is
diffracted into the zeroth order. The shape of these fringes
is shown in Figure 2 (continuous line) .

J > 3: (2J + 1)-beam interferometer

The fraction,
∑J
j=−J J

2
j (c), of the incoming atomic flux

that a light grating diffracts into the orders −J...J is
shown in Figure 3 as a function of the Raman-Nath param-
eter c. Evidently, the larger c, the more diffracted beams
have to be reflected by the mirror at z = 0 in order to
collect most of the flux and achieve high contrast fringes.
We see that, up to values c ' π, no substantial increase in
contrast will be obtained by reflecting more than 7 beams.
Since such c values are rather typical experimentally, we
will not go beyond the J = 3 interferometer in this pre-
liminary, investigative analysis.

2 On a possible implementation
using an array of parallel atom-mirrors

In principle, a convergent atom-lens of focal length f =
d/4, placed at z = 0, could be used to redirect the
diffracted beams so as to become remixable. One of the
motivations for studying a KD multiple-beam interfer-
ometer was the observation that dispersive interactions
can be used to coherently manipulate a broad class of
atomic species. For this reason, we will only consider all-
optical approaches to beam-reflection. A nearly parabolic,
convergent lens for atoms made of far-off detuned laser
light was first demonstrated by Sleator et al. [12]. It em-
ployed one intensity period of a standing-wave of light pro-
duced by grazing incidence reflection on a glass surface.
The aperture a was about 25µm and the focal length f
about 30 cm in that experiment using metastable helium.
In a KD three-grating Mach-Zehnder experiment using
metastable argon [6] the distance d/2 between the split-
ting (merging) and the reflecting grating was 25 cm and
the spacing between two consecutive diffraction orders at
z = 0 was about 8µm. This indicates that at least the
involved orders of magnitude would be appropriate for
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such an approach. It must be noted, however, that the
far-field condition, using the parameters from [6], reads
z � 2 m, meaning that the interferometer described in
that reference does neither really operate in the far- nor
in the near-field. A proper description of a multiple-beam
interferometer using a parabolic light lens and two KD
gratings operated in the intermediate field requires a de-
tailed numerical analysis that is clearly beyond the scope
of this paper.

From now on we will assume that the far-field condi-
tion is well satisfied, i.e., that the number m ≡ dλdB/a

2

is chosen large enough. For distances z̃ (behind a grat-
ing) corresponding to the far-field regime, both the width
a(z̃) ≥ a of the diffracted beams, a(z̃) ∝ z̃λdB/a, and
their mutual separation s(z̃) along the x-axis, s(z̃) =
z̃λdB/(λ/2), grow linearly with z̃. We will require the vari-
ous beams to be spatially well separated, meaning that the
geometrical ratio n ≡ s(z= 0)/a(z= 0) = a/(λ/2) at the
symmetry plane of the interferometer should greatly ex-
ceed one. In order to avoid “coloured” interference fringes,
a good monochromatization of the molecular beam is
mandatory. In particular, this guarantees that the diffrac-
tion spots and their positions at z = 0 are well de-
fined. Their mutual separation will then be given by
s = m2n(λ/2). If the light lens at z = 0 is produced
by grazing incidence reflection on a glass surface, the re-
sulting intensity period must exceed the minimum value
λ/2 by a factor of at least m2n (a factor of about 100
has been reported in Ref. [12]). Since we are intending
to reflect several diffraction orders, the aperture of the
light lens would actually have to be even larger. Although
there is no in-principle limit to larger intensity periods,
there do exist experimental limitations for such an ex-
trapolation. Other approaches could be considered as well.
For instance, the optical potential close to the intensity
maximum of a tightly focused laser beam could be used
as an atom lens with the required aperture [13]. For the
present discussion, however, we prefer a more conserva-
tive approach based on methods that have already been
successfully demonstrated in atom-optics experiments.

Since we are assuming a situation in which the spac-
ing s between the various diffraction orders is well defined,
constant and known, it would be enough to place an ar-
ray of parallel mirrors with mutual spacing s at z = 0,
instead of a single, wide lens. Nature provides us candi-
dates for highly parallel and equally spaced structures in
the form of standing-waves of light. The idea is sketched
in Figure 4. We see that, in the above picture, it essen-
tially amounts to dedicating one lens to every diffracted
beam. If Λ/2 denominates the spatial intensity period of
the broadened standing-wave and K = 2π/Λ the corre-
sponding wave number, within the same approximations
that led to expression (1) the resulting “optical” potential
V will be given by

V =
~Ω2

∆
sin2(Kx) . (7)

Again, Ω and ∆ represent the interaction Rabi frequency
and the detuning, respectively. In particular, the validity

0

x

z
0-d/2 d/2

Fig. 4. Scheme of a multiple-beam Kapitza-Dirac far-field
atom interferometer, in which the multiple-beam reflection at
z = 0 is accomplished with the help of an expanded standing-
wave of near-resonant light. The beam splitter (merger) at
z = −d/2 (z = d/2) is indicated with a dotted line.

of the semiclassical (“Raman-Nath”) approximation that
leads to the transmission function (1) and which basically
amounts to neglecting the kinetic energy term in the in-
teraction Hamiltonian [11] will also be assumed here and
easily justified a posteriori. Under such circumstances, a
mechanistical point of view is in order [14]. During the in-
teraction with the expanded standing-wave the atoms feel
a force which is the negative derivative, −dV/dx, of the
optical potential. If the difference

Λ

2
− s� Λ

8
(8)

and for large enough n, we can approximate the force Fj
acting on an atom of the jth order diffracted beam by

Fj = −2~Ω2K2

∆

[
Λ

2
− s
]
j . (9)

The angles between the various diffraction orders are typ-
ically smaller than a milliradian and have been highly ex-
aggerated in Figure 4 for illustrative reasons only. As a
consequence, the interaction time T of the atoms with the
standing-wave of light at z = 0 does not depend on j
essentially.

Physically speaking, the “Raman-Nath” regime cor-
responds to the situation in which the atom does not
have enough time to substantially move along the x-
axis during the interaction. The lateral momentum trans-
fer on the jth beamlet is then essentially given by FjT .
Since each diffraction order corresponds to a photon mo-
mentum transfer of 2~k, the reflection condition reads
FjT = −2(2~k)j, or

Λ

2
− s =

k

K2

2∆
Ω2T

· (10)

Using this relation and introducing the Raman-Nath pa-
rameter C ≡ Ω2T/2∆, the inequality (8) becomes

Λ

λ
� π

4
C (11)
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and makes evident that the reduced intensity gradient due
to Λ/λ� 1 must be compensated by increasing the mag-
nitude of C correspondingly. The previously defined max-
imum number J of reflected beams may be written

J ' int
(

Λ/8
Λ/2− s

)
. (12)

By choosing

C = c

(
Λ

λ

)
J
t

T
, (13)

the inequality (11) may be reasonably well satisfied, es-
pecially if T is chosen sufficiently shorter than t. Such a
choice also guarantees that the Raman-Nath condition for
the reflection grating at z = 0, πChT � MΛ2, is well
satisfied if the analogous inequality, πcht � Mλ2, holds
for the diffraction gratings at z = ±d/2.

In order for the involved atom-optical elements to act
as pure phase objects, satisfying the Raman-Nath con-
dition is indeed a necessary requirement. In experiments
performed with thermal atoms, this implies that the in-
teraction time has to be shortened as much as possible by
focusing the laser beams close to the diffraction limit. This
may prove fatal both for the gratings and for the mirror
array in our scheme. Due to the strong focusing, the en-
trance aperture a of the gratings is basically defined by the
lateral width of the laser focus, which typically comprises
a rather small number of standing-wave periods only [5,
6]. As a consequence, the ratio a/(λ/2) may not be large
enough to guarantee a clean separation of the diffraction
orders at z = 0. In addition, there remains the problem
of the physical length of the interferometer due to the re-
quirement d� a2/(λdB). A strong focusing is also hardly
compatible with the required parallelity of the constant
intensity planes in the reflection (middle) grating. As far
as the focal length of the reflection grating depends on
the laser intensity, its stability needs to be carefully con-
trolled during the interference experiment. Extremely sta-
ble sources have been recently used for trapping atoms in
a laser focus [13].

An implementation in the time domain, using cold
atoms released from a trap and interacting with prop-
erly timed laser pulses, would overcome these problems.
The Raman-Nath condition can then be fulfilled by choos-
ing short enough light pulses without compromising the
parallelity of the light intensity ripples. In particular, the
temporally spaced light gratings would be mutually par-
allel without further ado and the fulfillment of a far-
field condition does not imply prohibitive interferometer
lengths. In addition, the required high intensity and in-
tensity stability of the laser which produces the standing-
wave mirror array may be easier to achieve with a pulsed
(instead of cw) light source. Recent experiments employ-
ing released Bose-Einstein condensates interacting with
pulsed standing-waves [15] show that an excellent separa-
tion of the various diffraction orders can be obtained, due
to the large spatial coherence of the atom source. Since
the interaction time is defined by the pulse length and not

by the time-of-flight through the interaction region, chro-
matical aberrations are highly suppressed in time-domain
experiments. Taking the experimental data (in brackets)
from [15] as a reference, we may choose the following pa-
rameter values. Let m = 3 (m = 3.07) and n = 100
(n = 140). This means that a de Broglie wavefront of Na
atoms (M = 23 amu, λ = 589 nm) should be initially co-
herently delocalized over 50 wavelengths, i.e. a ' 30µm
(a ' 40µm). We choose c = 2.405 (c = 2.827), corre-
sponding to the J0(c) = 0 interferometric configuration.
The pulse time t is chosen as in the paper (t = 100 ns).
The free evolution time τ+ ' τ− = 4.2 ms (6.2 ms) is
long enough to guarantee that we are operating in the
far-field diffraction regime. The mutual spacing between
the diffracted beamlets is s = 0.256 mm (s = 0.378 mm).
If the interferometer mirrors are produced by a light grat-
ing with Λ = 1000λ, it should in principle be possible to
reflect diffraction orders up to j = ±2, i.e. J = 2. Set-
ting T = t, condition (11) is well fulfilled, 0.26 � 1, if C
is chosen according to equation (13). As was already em-
phasized, this implies that the intensity of the reflection
grating must be correspondingly increased by a factor of
roughly Λ/λ. Pulsed laser sources developed in the context
of atom optics and interferometry by the Hänsch group
[16] allow to deliver powers in the order of several 100 W
in the form of pulses in the ∼ 10 ns duration range. They
would also be ideally suited for producing the time-domain
mirror in the multiple interferometric scheme proposed in
the present paper.

Summary

We have theoretically studied the fringe shapes produced
by a symmetric multiple-beam far-field matterwave inter-
ferometer based on the atomic Kapitza-Dirac effect. A
number of interesting parameter values are identified and
a possible implementation is discussed. A realization in
the time-domain, using Bose condensates released from a
trap, seems practicable.

This work was supported by the Fundação de Amparo á
Pesquisa do Estado do Rio de Janeiro (FAPERJ).
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